Correction: In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

نویسندگان

  • Usha P. Andley
  • James P. Malone
  • R. Reid Townsend
چکیده

αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts.

α-Crystallin is a member of the small heat-shock protein (sHSP) family and consists of two subunits, αA and αB. Both αA- and αB-crystallin act as chaperones and anti-apoptotic proteins. Previous studies have identified the peptide (70)KFVIFLDVKHFSPEDLTVK(88) in αA-crystallin and the peptide (73)DRFSVNLDVKHFSPEELKVK(92) in αB-crystallin as mini-chaperones. In the human lens, lysine 70 (Lys(70)) ...

متن کامل

αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens.

αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high e...

متن کامل

Interaction of βA3-Crystallin with Deamidated Mutants of αA- and αB-Crystallins

Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystalli...

متن کامل

Oligomerization with wt αA- and αB-crystallins reduces proteasome-mediated degradation of C-terminally truncated αA-crystallin.

PURPOSE We previously demonstrated that the ubiquitin-proteasome pathway (UPP) is a general protein quality control system that selectively degrades damaged or abnormal lens proteins, including C-terminally truncated αA-crystallin. The objective of this work was to determine the effects of wt αA- and αB-crystallins on the degradation of C-terminally truncated αA-crystallin (αA(1-162)) and vice ...

متن کامل

Localization of biologically uncommon D-β-aspartate-containing αA-crystallin in human eye lens

α-Crystallin is one of the major proteins in the vertebrate eye lens and its function has been indicated to be maintenance of lens transparency. α-Crystallin exists in the lens fiber cell cytoplasm as a polydisperse aggregate with an average molecular mass of approximately 800 kDa. The aggregate is composed of two kinds of polypeptides, αAand αB-crystallins, containing 173 and 175 amino acid re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014